Further Algebra and Functions III Cheat Sheet

Presnuresetuition courses

Inequalities Involving Polynomial Equations
This section will be largely familiar and looks at sketching graphs and solving inequalities for polynomial equations. Cubic and quartic inequalities are solved in precisely the same way as quadratic inequalities.

Cubic Inequalities

Example 1: Solve $(5-3 x)(x+2)(x+1) \geq 0$.

$$
\begin{aligned}
& \text { Sketch the graph of: } \\
& y=(5-3 x)(x+2)(x+1) \\
& \text { by plotting the roots of the equation and } \\
& \text { recognising that a cubic with a negative } \\
& \text { coefficient of } x^{3} \text { will start in the upper-left }
\end{aligned}
$$

quadrant.

Write the regions of the graph that are
$x \leq-2$ or $-1 \leq x \leq \frac{5}{3}$
touching or above the y-axis.

Quartic Inequalities

Example 2: Find the values of x for which $x^{4}+6 x<7 x^{2}$.

the y-axis.
$-3<x<0$ or $1<x<2$.

Solving Inequalities Algebraically

Inequalities should not be algebraically solved by cross-multiplying, as with an equation. This is because if any denominators involve x, they could be positive or negative, which would cause the inequality sign to flip. alternative (but often longer) method is to multiply both sides by the square of the denominator.
Example 3: Solve the inequality $\frac{3 x-11}{x-4} \geq x-1$

```
Rearrange th
```

Rewrite the LHS as one simplified fraction

Inequalities Involving the Modulus of Functions (A-Level Only)

The modulus (or absolute value) function is represented by two vertical lines. For instance, the modulus of $y=f(x)$ is written as $y=|f(x)|$. This results in any y values that were previously below the x-axis being reflected in the x-axis. The part of the graph that has been reflected will hence have equation $y=-f(x)$. Questions involving moduli are best solved by means of a sketch.
Example 4: Solve $|3 x-7|<5-|x|$.

Sketch graphs of $y=\|3 x-7\|$ and $y=5-\|x\|$ on one set of axes, labelling each half of a graph with their respective equations. Note that the graph of $y=5-\|x\|$ is sketched by first drawing $y=x$, then reflecting all the negative y-values in the x axis to yield $y=\|x\|$. After, reflect in the x-axis to get $y=-\|x\|$, before finally translating by $\left[\begin{array}{l}0 \\ 5\end{array}\right]$ for $y=5-\|x\|$.	
Notice that the points of intersection are found when $-3 x+7=5-x$ and $3 x-7=5-x$. Solve each equation separately.	$\begin{gathered} -3 x+7=5-x \\ \Rightarrow 2 x=2 \\ \Rightarrow x=1 \\ 3 x-7=5-x \\ \Rightarrow 4 x=12 \\ \Rightarrow x=3 \end{gathered}$
Identify the region where the graph of $y=\|3 x-7\|$ is below the graph of $y=$	$1<x<3$

Graphs of Reciprocal and Modulus Functions (A-Level Only)

Given a function $f(x)$, it is possible to sketch its reciprocal $\frac{1}{f(x)}$ purely from the graph of $f(x)$ alone. Some key points are needed to sketch reciprocal graphs. These points are summarised in the following table.

$\boldsymbol{f}(\boldsymbol{x})$	$\frac{\mathbf{1}}{\boldsymbol{f (x)}}$
$f(a)=0$	Vertical asymptote at $x=a$
Vertical asymptote at $x=a$	$\frac{1}{f(a)}=0$
Horizontal asymptote at $y=a$	Horizontal asymptote at $y=\frac{1}{a}$
$f(x)>0$	$\frac{1}{f(x)}>0$
$f(x)<0$	$\frac{1}{f(x)}<0$
$f(x) \rightarrow 0$	$\frac{1}{f(x)} \rightarrow \infty$ or $\frac{1}{f(x)} \rightarrow-\infty$
$f(x) \rightarrow+\infty$	$\frac{1}{f(x)} \rightarrow 0$ (from above)
$f(x) \rightarrow-\infty$	$\frac{1}{f(x)} \rightarrow 0$ (from below)
Local maximum at $(a, f(a))$	Local minimum at $\left(a, \frac{1}{f(a)}\right)$
Local minimum at $(a, f(a))$	Local maximum at $\left(a, \frac{1}{f(a)}\right)$
a is the y-intercept	$\frac{1}{a}$ is the y-intercept

Example 5: If $f(x)=2 x^{2}+x-3, g(x)=|x|$, sketch a) the graph of $y=\frac{1}{f(x)}$, \mathbf{b}) the graph of $y=g f(x)$.
Factorise $f(x)$ to find its roots.
Find the minimum of $f(x)$ by
completed-square form.
completed-square form.

Sketch $f(x)$.

a) Draw vertical asymptotes where $f(x)=0$, Also, sketch on the y-intercept $\left(\frac{1}{3}\right)$ and local maximum $\left(-\frac{1}{4},-\frac{8}{25}\right)$ of $\frac{1}{f(x)}$.

Near the roots of $f(x), \frac{1}{f(x)}$ will be very large, tending to infinity at the vertical asymptotes. Note that $\frac{1}{f(x)}$ will be positive where $f(x)>0$ and negative where $f(x)<0$. Add this to the sketch both directions from above.

$f(x) \rightarrow+\infty$ in both directions, so $\frac{1}{f(x)} \rightarrow 0$ in

Join up the lines with smooth curves.

b) Identify that $f(x)$ is negative for values: $\frac{3}{2}<x<1$.
Reflect $f(x)$ for these values in the x-axis to yield the graph of $y=g f(x)=|f(x)|$.
www.pmt.education
PMTEducation

